[数学学习]是。有理数为整数(正整数、0、负整数)和分数的统称,因此0是一个有理数。0是极为重要的数字,关于0这个数字概念在其它地区很早就有。公元前3000年,巴比伦人就已经懂得使用零来避免混
有理数是正整数、0、负整数和分数的统称,是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算通行无阻。
有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
因为无限循环小数可以把小数转化为分数,根据有理数的定义,无限循环小数属于有理数。但是无限不循环小数无法转化为分数,所以是无理数。
无限循环小数:从小数点后某一位开始不断地出重复现前一个或一节数码的十进制无限小数。如35.232323…等,被重复的一个或一节数码称为循环节。循环小数的缩写法是将第一个循环节以后的数码全部略去,而在保留的循环节首末两位上方各添一个小点。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。